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PENETRATION INTO DRY POROUS ROCKf
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Abstract—I developed closed-form solutions for forces on projectiles that penetrated geological
targets. Constitutive target description consisted of a linear hydrostat and a Mohr-Coulomb failure-
criterion with a tension cutofl. Predictions from the model were in reasonably good agreement with
deceleration data from full-scale field-tests into dry, tuff targets.

INTRODUCTION

Studies on projectile penetration into geological targets usually focus on the prediction and
measurement of penetration depth or deceleration history. Theoretical models use solution
techniques that may be grouped into three main categories : empirical equations fit to test
data[l]; models that approximate the target response by one-dimensional motion using
cavity-expansion methods[2]; and wave-code analyses[3]. All of these approaches have
advantages and limitations which should be considered for each application.

In a recent paper, Longcope and Forrestal[4] developed cylindrical, cavity-expansion
models to predict forces on conical-nosed penetrators. The cavity-expansion approximation
idealizes the target as thin, independent layers normal to the penetration direction and
simplifies the analysis to one-dimensional motion in the radial direction. Constitutive
models are guided by triaxial, material tests on samples cored from targets used for full-
scale, penetration tests. The targets are described with a linear hydrostat and a Mohr-
Coulomb failure-criterion with a tension cutoff[5]. For targets that have nearly constant
shear-strength with increased confining pressure (such as sea-ice)[6], we use the Tresca
failure-criterion.

As shown in Fig. 1, there are usually three regions of target response : an elastic region,
a region with radial cracks, and a plastic region. As the penetration velocity increases, the
radially cracked region diminishes and is eliminated eventually. That is, for high enough
penetration velocity, the response is elastic—plastic. Target response is calculated by solving
the nonlinear, wave-propagation problem with a similarity transformation and numerical
evaluation of ordinary differential equations.

Penetration deceleration-time data have been retrieved for only two rock targets
[7, 8]. These targets, located at the Sandia Tonopah Test Range, Nevada, are ash-flow
and welded tuffs with densities p, = 1.62 and 1.97 mg m ™2, respectively. Longcope and
Forrestal[4] compare predicted and measured deceleration histories for penetration into the
ash-flow target (Antelope tuff) and show reasonably good agreement. However, when
applying this model to the welded tuff target (Mount Helen tuff), we discovered the model
overpredicted the deceleration data. In our previous paper(4], we consider the three regions
of response shown in Fig. 1; however, the elastic region is modeled as rigid. In this study,
the rigid region was modeled as elastic, and deceleration predictions were in better agreement
with field-test measurements. We also discovered that for slow enough penetration velocity,
the shear strength of the welded-tuff target was not exceeded. For this case, there was no
plastic region, and the response consisted of a radially cracked region next to the penetrator
nose and an elastic region. Thus, an elastic—cracked model was derived in this paper. Lastly,
this study presents very accurate, closed-form solutions derived by an iterative technique;
whereas, the previous models required the numerical solution of nonlinear, differential
equations. These closed-form solutions were programmed for numerical evaluations on a
personal computer.

t This work was supported by the U.S. Department of Energy under contract DE-AC04-76DP00789 and
the Naval Civil Engineering Laboratory, Port Hueneme, California, under contract N68305-84WR40082.
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Fig. 1. Geometry and response regions.

PROBLEM FORMULATION

A rigid projectile with a conical nose penetrates a uniform target with normal incidence.
As illustrated in Fig. 1, the problem is axisymmetric and further simplified by using the
cylindrical, cavity-expansion approximation. The conical nose with apical angle 2¢ expands
a layer of target material and opens a cavity at constant radial velocity ¥, where
V = V,tan ¢, and V, is the axial penetrator velocity. This expansion usually produces three
response regions: a plastic region next to the penetrator nose (the material has exceeded
its shear strength) ; a radially cracked region (the material has exceeded its circumferential,
tensile strength) ; and an elastic region. As discussed in the Introduction, the cracked region
vanishes for fast enough penetration velocity, and the plastic region may vanish for slow
enough penetration velocity.

Longcope and Forrestal show that a linear hydrostat and a linear, Mohr-Coulomb
failure-criterion provide good approximations to triaxial, test data for Antelope[4] and
Mount Helen[9] tuffs. Thus, the plastic region of response is described by

p=K(1—po/p) = Kn (la)
0,—0g=pup+71o; To=(1—p/3)Q (1b)
o> —Y (1)

where p is hydrostatic pressure, p,, p are densities in the undeformed and deformed
configurations ; n is volumetric strain ; ¢,, oy are radial and circumferential stress components
(positive in compression); u, 7, define the failure criterion; Q is unconfined compressive
strength ; and Y'is tensile strength. The elastic region has material constants K and Poisson’s
ratio v. If a cracked region exists, it is taken as elastic with g4 = 0.

The plastic region (Fig. 1) is bounded by the radii, r = V¢ and r = ct; where r is the
radial, Eulerian coordinate; ¢ is time; and c is the velocity of propagation of the plastic
wave-front. Equations of mass and momentum conservation in cylindrical, Eulerian coor-
dinates are:

dp 10 )

7] + ;—a—r(rpv) =0, (2a)
do, o,—0, _ ov o\

E‘—+ P —P<E+Uar>, (2b)

where v is the radial, particle velocity (positive outward). As suggested by Hill[i0] and
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discussed by Forrestal and Longcope[6], the axial stress is taken as o, = (0,+ 04)/2. Thus,
pressure becomes p = (7,4 g4)/2.

The elastic and cracked regions are governed by the linear theory of elasticity. However,
for the cracked region, the tensile strength has been exceeded, and o, = 0. Equations that
describe the response regions are now derived.

ELASTIC-PLASTIC RESPONSE

The nonlinear equations for the plastic region are combined to eliminate a4, p, resulting
in two equations in o,, v:

do, g,  ATg _ —po ov v

ar T TS 1_,,<E+”5) (3a)
and

v v —a do, 0o,

5+;=——'—K(1_n) ('E' +U—é?>, (3b)

a =2/(2+p). (3¢)

Post-analysis numerical evaluations showed that #» is small, and (1 —#) is taken as unity.
The dimensionless variables

S=06,/K, T=1K, U=vfc, e=V/c (4a)
and the similarity transformation
E=rfet (4b)

are introduced. With (4a, b), eqns (3a, b) transform to

e e -, (52)

s (€ =a j“g aU‘;—“g (5b)
in which

B =clc,, ¢ =K/p,. (5¢)
The boundary condition at the cavity wall is

Ul=¢)=c¢. (5d)

Solutions for dry, tuff targets require the Mohr—Coulomb failure-criterion ; however,
other targets such as sea-ice[6] or saturated sandstone[l1] are modeled adequately with

the Tresca criterion (u = 0). For u = 0, the solutions are less cumbersome and have different
functional forms. Thus, solutions for both failure criteria are derived. For y = 0, eqns
(5a, b) reduce to

as T du p*d
d_f—_é /3532—'2“32 U?) (6a)

dS
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Closed-form solutions for the nonlinear eqns (5) and (6) are obtained with an iterative
procedure similar to that previously used on linear equations[12). This iterative procedure
is outlined for the simpler eqns (6a, b) with u = 0. First, set the right side of (6b) to zero,
solve for U, and evaluate the integration constant with (5d). This first approximation to
the particle velocity is

UNE) = e384 (7a)

Next, substitute (7a) into the right side of (6a) and integrate. This first approximation to
the radial stress is

S%E) = —(T+B%)Ins—(B%*/2)¢ " + By (7b)
By = S,+p%*12, (7¢)

where S, is the radial stress in the plastic region at the elastic-plastic interface, and B, is
obtained from S%(¢ = 1) = S,.

The procedure is repeated by substituting (7a, b) into the right side of (6b), solving for
U, and evaluating the intregration constant with (5d). This second approximation to the
particle velocity is

U'E) = — (T+2eDE2+X(T+2B%NE " In+ (B7%/2)¢ >+ 4, &7 (8a)
A, = Uy+(T+ B2 — /2, (8b)

where U, is the particle velocity in the plastic region at the elastic-plastic interface and 4,
is obtained from U'(¢ = 1) = U,. As discussed by Hunter[13], the elastic—plastic interface
speed ¢ (B = c/c,) depends on the cavity-expansion velocity V (Be = V/c,). This interface
velocity is obtained from eqn (5d) and given by

1+ (T4 p%)2—(T+2B%Y)Ine—f%*2-A4,e7* =0 (8¢)

where fe = V/c, is not explicitly related to § = ¢/c,. As before, the second approximation
to the radial stress is obtained by substituting (8a) into the right side of (6a) and integrating.
Thus

S'&) = —[T+p*4,—B2e*(T+2p%")]In & — (Be*/2)(T+2p%7)(In &)’
— (B AT+ B*e)E2+ (3B — (B /IU' (O + B, ;. (8d)
B, = Sy + (B /4)(T+ B%e*)—3p% {4+ (82/2)(U,)* (8e)
where S, is the radial stress in the plastic region at the elastic—plastic interface and B, is
obtained from S'(¢ = 1) = §,. It will be shown later that these iterative solutions are in
excellent agreement with numerical evaluations of the nonlinear equations.

Solutions for the Mohr-Coulomb criterion are obtained with this same procedure. The
first approximations are

U'(&) =¢%¢"; (9a)
2.2 2.4
SOE) = Bot~— <“T+ﬁ ‘ )— ( Fe )5-2; 9b)
op 2—au
2.2 2.4
Bo=52+<aT:B8 >+ e (9¢)
H S 2—au

The second approximations are

1 = — @) (1 —au) (2aﬂ284> ~1 el —~(1+ap) aﬂzsbc_a - .
U= <2_a# gl 4 >—on E N InE—ag?BeE M+ 4 T—oi +A4,E
(9d)
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2 2,6
o’B, aﬂ
=U;+ —— +ae’B
: (2— ) T 2=ap)

§Y8) =S'O+S5(@)+ B¢ (9)
S') = = T/p+B*{—(C\/D(A —ap)&*~* — (C,fap)(In & — 1 /ap)

(%¢)

+(C—A4)2u+ Cs(1+ o)~ In £+ [3Co/2—amlE ™%} 5 (98)

— B {6C§é"’““ (8C,A,—2C,Cy) . (2C,A4,-24%)
Sc = d4ap —2+ap
©=—5"16=w G—ap) ° - °
+2CH1 —ap)E? = +4C,C5E % — (C3Co/2)(d+ap)é~*
2 2
~[@HE(CICat Col ) G 2)CCole 7+ 2 g
+[2a#C1A1—2ClC2]lné+aﬂC1C2(lﬂ §)2+ Mé_z-’-'”
2—au)
2a ucz][ 1 ]g-zw
4C,4, i
[ T e—a )™ Coaw =
8C,C, 1 ~d+apn - .
+ @—ap) l:lﬂ§+ —(4—-ap)j|€ —C,C32+au)é~In {} ; (h)
By = Sy + (aT+ %)/ (ap) + Be*/2—ap) ; (9i)
A1=U2+C|+C3—C4; (9.])
B =8,-S(¢=1)-8E¢=1); (9k)
Cy = p’Bo/2—ap), C,=2ap%*|(2—au); D)
Cs=ae’B,, C,=af%/(2—ap). (9m)

The interface velocity c(f = ¢/c,) is related to the cavity-expansion velocity V(fe = Vie,)
through

14 2aBoe~*/(2—ap)—ap?e?(1+2Ine)/(2—ap)—A4,e"* = 0. (9n)

It will be shown later that these iterative solutions are in excellent agreement with numerical
evaluations of the nonlinear equations.

The elastic and plastic regions of response are linked through the Hugoniot jump
conditionst that conserve mass and momentum across the wave-front. Written in terms of
the dimensionless variables

Us=1=(p\/p2)(1-U)) (10a)
Sy =S51+8%(pi/p) (1 =U)(U,-U)), (10b)

where the subscript 2 refers to quantities in the plastic region at the wave-front, and the
subscript 1 refers to quantities in the elastic region at the wave-front.

The Mohr—Coulomb or Tresca criterion (1b) holds on either side of the elastic—plastic
interface. However, on the plastic side of the interface p = (0,4 64)/2, and on the elastic
side p = (6,4 05)(1 +v)/3. In terms of the dimensionless variables

Sy = (1—po/p2)/a+T/2 (10¢c)
Sy = (1—po/pi)fe.+T(2; (10d)

1 This derivation corrects errors in our previous papers[4, 6, 14]. Fortunately, these errors did not affect the
numerical results.
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where a, = 2[3/(1+v)+ ] '. Eliminating p,, p, from eqns (10a—d) and linearizing gives:

Uy = Ui+ (@—a (S, — T/2)/(1 —af?) (11a)
and
Sy =8+ fHa—a )8, — T/2)/(1 ~af?). (11b)
Equations for the clastic response[14] are
B (1=2v)(1-zH"? I+(1-2z%)"
S(¢) = 770 _V){ s +ln(: . ]}, 1< &< 1/(By) (12a)
U© = B(1-29)"z, <</, (20)
in which
2= Byt E(1-v) . (1+v)

“TTEI-mp T T30y

The elastic wave-frontis at £ = 1/a, and the elastic-plastic interface is at £ = 1. The constant
B is determined by satisfying the yield criterion (1b) at £ = 1. Thus

T

—upyln {

B= (12¢)
(1=20[1 - Bn*'"

(1-v)py?

1-[1 —(ﬂv)zl'“}'
By

Explicit equations for radial stress in the elastic and plastic regions are not obtainable
directly from the input V(e = V/c,). However, if a value of § is chosen, the corresponding
cavity-expansion velocity and radial stresses can be conveniently calculated. For a given
and specified target, material properties, S(£) and U(€) in the elastic region can be calculated
from (12a—c). With the elastic, radial stress and particle velocity known, U, and S, are
obtainable from the jump conditions (11a, b). The cavity-expansion velocity can then be
calculated from (8c) for the Tresca criterion (u = 0) or from (9n) for the Mohr-Coulomb
criterion. Finally, radial stress in the plastic region can be calculated from (8d, e) or
(9f-m).

Laboratory experiments{15] and field tests obtain data for calculating net axial force
during penetration. The axial force[16] is given by

F, = na’o,(e), S() = 0,(e)/K, (13)

where a is the cylinder radius shown in Fig. 1.

ELASTIC-CRACKED-PLASTIC RESPONSE

Numerical results from the elastic-plastic model show that circumferential, tensile
stresses are developed for slow penétration velocity. Since geological targets typically have
a much lower, tensile than compressive strength[5], radial cracks are developed in the
target. Thus, the model developed in this section contains a radially cracked region (Fig. 1)
between the elastic and plastic regions. Equations for the plastic region were derived in
the previous section. However, these equations require the radial stress and particle velocity
in the plastic region at the cracked—plastic interface (S5, V). Values of S,, ¥, for this model
are now obtained from analyses of the elastic and cracked regions.

The radially cracked region has zero circumferential-stress and is bounded by r = ct
and r = ¢ ¢, where ¢, is the propagation velocity of the elastic—cracked interface. Response
equations for this region are obtained from the linear version of (2b) with 6, = 0; and,
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as assumed for the plastic region, ¢, = (0,+0g)/2. The material law uses (la) with
1 = — (Ou/dr+u/r), which implies plane strain. The dimensionless radial stress and particle
velocity are:

[epymep=s1 ), or

s = | XS (0 ) T i<e<pi (4
_[26ome-p-s](1_p\_ T

o= | - 5) - re<sn aw

where S, is the radial stress in the cracked region at the elastic—cracked interface
(€ = c1/c = B./B). At the cracked-plastic interface (¢ = 1), eqn (14a) satisfies the yield
criterion (1b) with o = 0. Thus

SE=1)=35=2T/2-p), (15)

which is the radial stress in the cracked region at £ = 1.

As previously discussed, the Hugoniot jump conditions link the response regions. For
the cracked and plastic regions, o, = p = (6,+04)/2. Thus, eqns (10a—) and eqn (10d),
with a, set to a, tie together the cracked and plastic regions. Evaluation of these equations
shows that radial stress and particle velocity are continuous across this interface, or

S,=8, Uy=U,. (16)

The elastic region is bounded by r = ¢t and r = ¢, (Fig. 1). Equations for the elastic
response are given by (12a, b) when B is defined as

2(14+vT/ap

5 =M -G {M} | :
@’ o

where T, = Y/K and §, = c,/c,. For this value of B, the circumferential stress component
in the elastic region at the elastic—cracked interface (¢ = B,/f) is the maximum tensile
strength (¢, = — Y). Asindicated by Goodman[5], Yis usually at least an order of magnitude
less than the unconfined, compressive strength Q.

The elastic and cracked regions are connected with the Hugoniot jump conditions

Us= BB~ (ps/p)(B./B)—Us] (18a)
and

Ss = S3+(p3/po)B*(B:1/B)— Us}(Us—Uy). (18b)
Since p = (6,+0,)/2 in the cracked region, p = (I1+v)(0.+064)/2 in the elastic region,
0y = — Y in the elastic region at the elastic—cracked interface, and o, = 0 in the cracked
region

Sy =T+ [3/(1+ V)1 = po/p3) (18c)

Sa=2(1-po/pa) (18d)
Eliminating ps, p4 from eqns (18a-d), and linearizing gives

B [1 (1+v)] B <1+v>
= —-— | —|T;; 19
o=t ammlza= s Pra-mm\3 )" 1)

- g1 (11)] b (1_+.)
S"S’+(1—ﬁ%/2)[5“ 3 )5 | tazpm\ ) (19%)
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As before, explicit solutions in terms of the input V(e = V/c,) are not obtainable. To
calculate response in the three regions, choose a value of §, and calculate the elastic response
from (12a, b) and (17). Values of fU, and S, can then be calculated from (19a, b). Radial
stress and particle velocity in the cracked region at the cracked-elastic interface (¢ = 8,/8)
can also be obtained from the equations for the cracked region (14a, b). Equating both
values of U, gives the expression for f = c/c,

28,(BU)+2S,
)
(2‘_#>( B, T+4,S.+2(BU,)

where S,, BU, are given by (19a, b). As previously discussed, radial stress and particle
velocity are continuous across the plastic—cracked interface (¢ = 1), and values of U,, S,
can be obtained from (14a, b) with & = 1. Then all quantities required to calculate response
in the plastic region are known. The input ¥/c, = fe can be obtained from (8c) or (9n), and
the radial stress can be calculated from (84, e) or (9f—m).

=

; (20)

ELASTIC-CRACKED RESPONSE

As discussed in the Introduction, the shear strength of the target may not be exceeded
for materials with small, tensile strength and for slow penetration velocity. For this case -
there is no plastic region, and the response consists of a radially cracked region next to the
penetrator nose and an elastic region. The cracked region is bounded by the cavity radius
r =Vt and r = ¢ t, where ¢, is the propagation velocity of the cracked—elastic interface.
Since a hole is opened from zero radius, this solution requires a nonlinear analysis for the
cracked region.

The equations that govern the cracked region are obtained from (l1a) and (2a, b) with
gs = 0. Following the previously used methods and assumptions:

s S _ 2(92_ ﬂ’)
2t Ve (21a)
dU U ds Uds

EtTTE e @1
with = ¢,/c,. The boundary condition at the cavity wall is
U =¢)=c¢. (21¢)
First approximations for particle velocity and radial stress are
U@ =¢! (22a)
S = =P — B¢+ Bo¢ ™ (22b)
B, =S+ B (1+¢?), (22c)

where S is the radial stress in the cracked region at the elastic—cracked interface (¢ = 1)
and B, is obtained from S(& = 1) = §,. The second approximation for particle velocity is

U'E) = B%% " InE—(Bof2) 1 + €2 ) +2p%E+4, 871, (23a)
A, = U+ (Bo/2)(1 +1)—2p%°; (23b)

where U, is the particle velocity in the cracked region at the elastic—cracked interface, and
U, is obtained from U'({ = 1) = U,. The elastic-cracked interface speed c¢,(f = c,/c,) is
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obtained from (21c) and given by
1—-B%*Q2+Ine)+Boe '+ 4,672 =0. (24)

The second approximation for radial stress is

SHE) = B 1O+ B H(OR2-BUOV 12+ B¢ (252)
[1(©) = 2B%* —A4)5+6p%°¢ ! + Boe’ In ¢~ BPe*¢In¢; (25b)
f2(§) = Big/4— (A1 + Bog?[2+2B%% + 28 4,)¢ ™!
+ (4B B8 +2A4,Boe® + f2 e By/4)E~?
—(3Byc*[4+124,B%  +4B%'°/9)¢ ~* +8B, B¢ 4
—208%'2¢ "5 —BoA, InE—(2B%5+2P%*4)¢ " In¢
+(B%Bo/2)¢*In§—(4B%'°/3) * In¢&

—(B*e*Bo/2)(In §)* - p*e* ¢~ '(In §)?; (25¢)
where B, is found from S'(¢ = 1) = S, and given by
B, = 5,1 = D= (B2 fo& = D+ (B f:(¢ = 1). (25d)
From the Hugoniot jump conditions (10a, b) and the previously applied procedures
1 1 1+v 1 T+v
Ve= U o) [i - <T)]S e 7y (T)T ’ #6)
B B2 1 (1+v p? (1 +v>
=8 g 3= (5) o (5 e

where the subscripts 2 and 1 refer to quantities in the cracked and elastic regions, respec-
tively, at the interface (£ = 1). These equations link the elastic and cracked regions.
Equations for the elastic response are given by (12a,b) with B defined by (17). Numerical
evaluations are obtained with the procedure outlined for the elastic—plastic model.

QUASI-STATIC RESPONSES

Quasi-static solutions have important physical significance for predicting projectile
trajectories. As discussed by Hill{10}, a finite pressure is required to open a hole from zero,
initial radius. Thus, for an infinitesimal, cavity-expansion velocity V, there is a finite, radial
stress on the cavity wall. For penetration applications, the projectile velocity V, and cavity-
expansion velocity V decrease with penetration depth. At the end of the penetrator trajec-
tory, there is a sudden decrease (jump) in axial force. This phenomenon is observed in
instrumented field-tests[4, 6]; where at the end of the event, the deceleration response
jumps from a finite value to zero.

Previously developed methods of analysis[4, 10] were applied to obtain the quasi-
static solutions for the response modes of this study. For the elastic-plastic model, the
plastic region is bounded by the cavity wall (» = a) and the elastic—plastic interface (r = R).
Radial stress in the plastic region is

o T(r\* T

=) = 27
X au(R) . for u#0 (27a)
) 1 R

bl .l = = 27b
X T[Z +1n(r>:|, for u=0 (27b)
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ay x (1+v)
<§> N T[z—au + 3(1 —2V)}' (27¢)

The elastic stress components are :

where

RY —T(RY}
(7); %=T(7>' @8

For the elastic—cracked—plastic model, the plastic region is bounded by the cavity wall
(r = a) and the cracked-plastic interface (r = ¢). The cracked~elastic interface is located at
r = R. Radial stress in the plastic region is

o, 3 To 2+“ = 2p/(2+p) T, .

K= (2 I»l)( ) P for u#0; (29a)
i T[1+ln (5)} for u=0; (29b)
K r

ay _ (5 4v) 2 <T>2

<E> B)1-2v) <2 u) : (29)
o, 2 c
K~ (z—-—u) T(:) (30)

g, RV ¢ RY:
w=r(i): 2=-n@) G1a

¢ (2=p)\(T,
R™ (T)(? | G10)

For the elastic-cracked model, the cracked region is bounded by the cavity wall (r = a)
and the elastic—cracked interface (r = ¢). Radial stress in the cracked region is

‘;—é =T (;) ; (32a)

a¥ | (5-4v)
<E> = [3(1—2v)]T’ (326)

In the cracked region

and in the elastic region

and the elastic stresses are

g, cY 0 ¢}V
?—Tl(;>, ’E=*T1 o E (33)

For all these models, 6, = 0 in the cracked region, and o, in the plastic regions can be
obtained from the radial stress and the yield criterion.
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NUMERICAL EXAMPLES

In this section, graphical results from the response models for three targets are pre-
sented : sea-ice[6] with pg = 0.92 Mgm™3, K = 4.0 GPa, 1, = 10.5 MPa, u = 0, v = 0.27,
Y = 0.86 MPa; Antelope tuff[4] with po = 1.62 Mg m~3, K= 2.0 GPa, 14 = 10 MPa,
u=1.0, v=0.234, Y= 14 MPa; and Mount Helen tuff[9] with p,=1.97 Mg m~3,
K =952GPa, 1y =50 MPa, x = 1.20, v = 0.25, Y = 3.30 MPa.

As previously mentioned, the response modes depend on the cavity-expansion velocity
and the target material properties. For small enough cavity-expansion velocity, the response
is either elastic—cracked or elastic—cracked-plastic. The appropriate response mode for
small, cavity-expansion velocity ¥ can be determined from the quasi-static response
solutions. Equation (27c¢) for the elastic—cracked—plastic response mode relates the location
of the cavity wall (r = a) to the location of the cracked-plastic interface (r = R); thus, if
(a/R) > 1, the response mode is elastic—cracked. As the cavity-expansion velocity increases,
o,(¢ = ¢) also increases. From the yield criterion with o, = 0, the response becomes elastic—
cracked-plastic when ¢,(¢ = g)/K = 2T(2 — u). As the cavity-expansion velocity continues
to increase, the cracked region of response decreases. Finally, when the cracked-plastic,
interface velocity c equals the elastic—cracked, interface velocity ¢, the response becomes
elastic—plastic.

Figure 2 shows radial stress at the cavity wall ¢,(¢ = €) vs radial cavity-expansion
velocity V for a sea-ice target with y = 0. For the air-dropped penetration tests into sea-ice
targets conducted by Young and Keck([17}, impact velocity was 160 m s~ ', tan ¢ = 0.25,
and V/c, < 0.02. However, recoilless guns have launched instrumented projectiles to about
four times this impact velocity, so tests could be performed to about 600 m s~'. In Fig. 2,
S%¢ = ¢) and S'(¢ = ¢) are compared with numerical solutions to the nonlinear equations
for the elastic-plastic model. There is practically no difference between S'(£ = ¢) and the
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Fig. 2. Radial stress components on the conical nose for a sea-ice target. A comparison of the
iterative solutions §°(¢) and S'(¢) with the exact, nonlinear solutions.
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numerical, nonlinear solution for ¥/c, < 0.35. In the upper graph, results from the elastic—
cracked-plastic and elastic—plastic models are presented. For these material properties, the
models predict a radially cracked region for V/c, < 0.04. For V/c, > 0.04, the response is
elastic—plastic. In both models, the dynamic calculations gave the quasi-static values as the
cavity-expansion velocity approached zero. Also, the tensile strength for this target is large
enough that no cracked-elastic response mode occurred.

Figure 3 shows radial stress at the cavity wall ¢,(¢ = ¢) vs radial cavity-expansion
velocity V for the Antelope tuff target. For the field test conducted by Young[8], the impact
velocity was 520 m s™', and V/c, < 0.14. Figure 3 compares results from the numerical,
nonlinear solution with the closed-form results for the elastic—plastic response model. The
dynamic calculations merge to the quasi-static values for V approaching zero, and agreement
between S'(£ = ¢) and the nonlinear solution is within 9% for V/c, < 0.25. At V/c, = 0.25,
the radial stress on the penetrator nose is o,(¢ = ¢) = 0.48 GPa (72,000 psi) which could be
a significant structural design limitation. Also, ¢,(¢ = ¢) = 0.48 GPa is about the upper
limit on stress magnitude for triaxial, material tests. For this target, there is a radially
cracked region for ¥/c, < 0.11, and for ¥/c, > 0.11, the response is elastic-plastic. Tensile
strength for this target is large enough that no cracked-elastic response mode occurred.

Figure 4 shows radial stress at the cavity wall ,(¢ = ) vs cavity-expansion velocity V
for the Mount Helen tuff target. For the field test conducted by Patterson[7], the impact
velocity was 411 m s~ ' and V/c, < 0.047. No detectable differences between S'(¢ = ¢) and
the nonlinear solution occur over the plotted range for this target material. Butters[18]
reports Y = 3.3 MPa, but tensile strengths typically have more scatter than the other material
properties. To show the sensitivity of tensile strength, ¢.(¢ = ¢) is also plotted for five times
and one-fifth the reported tensile strength. For ¥ = 16.5 MPa, the response is elastic—
cracked-plastic. For ¥ = 3.3 MPa and 0.66 MPa, the response is elastic—cracked for
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Fig. 3. Radial stress components on the conical nose for Antelope tuff. A comparison of the iterative
solutions S%e) and S'(¢) with the exact, nonlinear solution.
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Fig. 4. Radial stress components on the conical nose for Mount Helen tuff. No detectable differences
between the iterative solution S'() and the exact, nonlinear solution occurred over this range.

o,(¢ = €)/K < 0.0132, and elastic—cracked-plastic for o,(¢ =¢)/K > 0.0132. The dynamic
calculations merge to the quasi-static values for ¥ approaching zero.

COMPARISONS WITH FIELD-TEST DATA

As mentioned, penetration, deceleration-time data were obtained for only two, rock
targets[7, 8]. These targets were ash-flow and welded tuffs with densities p, = 1.62 and 1.97
Mg m~?, respectively. Post-test, target observations indicated a crater near the target surface
that was 1 or 2 nose-lengths deep, followed by a tunnel with about the penetrator diameter.
Deceleration-time data[7, 8] show monotonic rises during the crater phase and maxima
during the tunnel phase. These cavity-expansion models were developed for the tunnel
phase of penetration.

As indicated by eqn (13), axial force on the penetrator nose is proportional to the
radial stress on the nose or at the cavity radius. However, another mechanism that increases
resistance to penetration is the sliding friction between the penetrator and target material.
Most knowledge of friction phenomena at high speeds is for metals and is contained in the
article by Bowden and Tabor[19]. This article explains that frictional resistance is controlled
by a thin melt layer of material, and post-test observations of penetrators[20] show surface
melting of the nose. Coefficient of friction data for steel on’'steel and steel on nylon show
nearly the same resistance which indicates that frictional resistance is dominated by the
material with the lower melting point. More recently, Gaffney[21] measured the dynamic
friction between rock cores and a rotating steel disc. Data were obtained for velocities to
30 m s~ ' and contact stresses to 100 MPa. Unfortunately, penetration applications require
data for much higher sliding velocities and larger contact stresses. As discussed in {20], the
axial resultant force that includes sliding friction is given by

F, = na’o,(e)(1 +f/tan ¢), (34)

where the friction coefficient f depends on the penetrator velocity.
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Predictions from the theories are now compared with rigid-body penetrator decel-
eration data. With o,(¢) determined from the target motion analysis and eqn (34), decel-
eration is calculated from

dv,/dt = — F.jm (35)

where m is the penetrator mass and V, is the penetrator velocity.

For the Antelope tuff (p,=1.62 Mg m~?) field test[8], the penetrator had total length
1.56 m, aft-body diameter 0.156 m, a 6.0 CRH (caliber radius head) nose shape, and mass
162 kg. The penetrator was propelled with a 0.305 m diameter, smooth-bore, recoilless gun
(Davis gun) to an impact velocity of 520 m s~ . Since the penetrator had a smaller diameter
than the gun bore, the aft portion of the penetrator was fitted with a foam sabot and a 55.3
kg, steel pusher-plate that fitted the internal diameter of the gun barrel. Gun pressure was
applied to the pusher-plate, and the sabot kept the penetrator centered for normal impact.
While the foam sabot had negligible mass, the pusher-plate (55.3 kg) added to the effective
penetrator mass for the first body-length of penetration. The pusher-plate was eventually
stripped from the penetrator near the target surface. Deceleration data with 2 kHz resolution
was measured with an on-board accelerometer and digital recording system. The decel-
eration data shown in Fig. 5 were filtered to 0.5 kHz to remove some higher frequency
responses associated with the vibrations of the penetrator and mounting structure for the
instrumentation package.

Comparisons of predictions with the deceleration data are also given in Fig. 5. The
theoretical model is for a penetrator with a conical nose ; whereas, the penetrator used in
the field test had an ogival nose. Based on hundreds of full-scale, soil-penetration tests,
Young[1] concludes that a 6.0 CRH, ogival nose is nearly equivalent to a conical nose with
tan ¢ = 0.30. The predictions in Fig. 5 used this equivalent conical nose. Predictions that
include sliding friction used

f=ff_(f!_fd)(V:/Vd) for Vz < Vd and
S=/ for V,> V,.

This relationship is based on the limited data from {19, 21} and used f, = 0.50, f;= 0.08, and
V,=30 m s—'. The predictions also assumed that the pusher-plate was instantly stripped
from the penetrator after one body-length of penetration ; this accounts for the deceleration
jump at ¢ = 3.0 ms. At the end of the trajectory, there is another deceleration jump. This
sudden jump to zero deceleration occurs because a finite value of radial stress is required
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Fig. 5. Deceleration-time predictions and measurement from a field test into Antelope tuff.
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to open a cavity. This threshold stress is the quasi-static solution given by eqns (272, ¢) and
shown in Fig. 3 for V approaching zero. Figure 5 shows predictions that include and neglect
the resistance from sliding friction.

For the Mount Helen tuff (p, = 1.97 Mg m™?) field-test[7], the penetrator had total
length 1.52 m, aft-body diameter 0.165 m, a 9.25 CRH nose shape, penetrator mass 182
kg, and pusher-plate mass 53.2 kg. The penetrator was accelerated to 411 m s~ ' impact
velocity, and two, on-board accelerometers recorded deceleration. Deceleration-time data
filtered to 0.5 kHz and predictions are shown in Fig. 6. Based on the data in [1], the 9.25
CRH nose shape was approximated with a conical nose with tan ¢ = 0.25. The prediction
with sliding friction used the same relationship as that for Antelope tuff. Figure 6 shows
predictions that include and neglect the effect of sliding friction.

DISCUSSION

Research on penetration into geological targets consists of a mix of analytical, experi-
mental, and field-test work. However, this branch of mechanics seems to be dominated by
full-scale tests. Over the last two decades, Young[l, 8, 17] and Patterson[7] conducted
hundreds of instrumented, full-scale, field-tests into soil, rock, and sea-ice targets. These
penetrators usually contained on-board recording systems and measured deceleration dur-
ing the penetration event. In this study, closed-form solutions for forces on penetrators
launched into geological targets have been developed and deceleration-time histories that
were in reasonable agreement with field-test measurements predicted. The penetration
model was guided by post-test observations that included triaxially sheared material next
to the tunnel and radial cracks produced by circumferential tension.

The present models improved our previous work[4, 9] by including three regions of
response: a plastic region, a radially cracked region, and an elastic region. In addition, it
was discovered that for slow enough penetration velocity, there was the possibility that no
plastic region existed. Thus, the elastic—cracked model was developed. Lastly, this study
presents accurate, closed-form solutions ; whereas, the previous models required the numeri-
cal solution of nonlinear, differential equations. These closed-form solutions were pro-
grammed for numerical evaluation on a personal computer.

Although the cavity-expansion models were in good agreement with field tests, it is
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Fig. 6. Deceleration-time predictions and measurements from a field test into Mount Helen tuff.
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important to reiterate the major assumptions, which are: (1) the cylindrical, cavity-expan-
sion approximation that considers the target as independent layers normal to the penetration
direction and assumes only radial, target motion, (2) a constitutive target description guided
by quasi-static data that contains minimum detail, and (3) sliding friction data from
experiments very different from those physical situations that occur in penetration events.
Clcarly, there is a need for additional research in this branch of mechanics.
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